Saddle Points
1. Readme
鞍点
检测矩阵中的鞍点(saddle point).
所以说你有一个像这样的矩阵:
0 1 2
|---------
0 | 9 8 7
1 | 5 3 2 <--- saddle point at (1,0)
2 | 6 6 7
它在(1,0)处有一个鞍点.
它被称为”鞍点”,因为它是该 行 最大数,也是该 列 的最小数。
矩阵可以具有零个或多个鞍点.
您的代码应该能够为任何给定矩阵提供所有鞍点的(可能为空)列表。
矩阵可以具有不同数量的行和列(非正方形)。
请注意,您可能会在线找到矩阵鞍点的其他定义,但本练习的测试遵循上述明确的定义.
资源
J Dalbey 的编程实践问题http://users.csc.calpoly.edu/~jdalbey/103/Projects/ProgrammingPractice.html
2. 开始你的表演
pub fn find_saddle_points(input: &[Vec<u64>]) -> Vec<(usize, usize)> { unimplemented!( "find the saddle points of the following matrix: {:?}", input ) }
3. 测试代码查看
# #![allow(unused_variables)] #fn main() { // We don't care about order fn find_sorted_saddle_points(input: &[Vec<u64>]) -> Vec<(usize, usize)> { let mut result = find_saddle_points(input); result.sort(); result } #[test] fn identify_single_saddle_point() { let input = vec![vec![9, 8, 7], vec![5, 3, 2], vec![6, 6, 7]]; assert_eq!(vec![(1, 0)], find_saddle_points(&input)); } #[test] //#[ignore] fn identify_empty_matrix() { let input = vec![vec![], vec![], vec![]]; let expected: Vec<(usize, usize)> = Vec::new(); assert_eq!(expected, find_saddle_points(&input)); } #[test] //#[ignore] fn identify_lack_of_saddle_point() { let input = vec![vec![1, 2, 3], vec![3, 1, 2], vec![2, 3, 1]]; let expected: Vec<(usize, usize)> = Vec::new(); assert_eq!(expected, find_saddle_points(&input)); } #[test] //#[ignore] fn multiple_saddle_points_in_col() { let input = vec![vec![4, 5, 4], vec![3, 5, 5], vec![1, 5, 4]]; assert_eq!( vec![(0, 1), (1, 1), (2, 1)], find_sorted_saddle_points(&input) ); } #[test] //#[ignore] fn multiple_saddle_points_in_row() { let input = vec![vec![6, 7, 8], vec![5, 5, 5], vec![7, 5, 6]]; assert_eq!( vec![(1, 0), (1, 1), (1, 2)], find_sorted_saddle_points(&input) ); } #[test] //#[ignore] fn identify_bottom_right_saddle_point() { let input = vec![vec![8, 7, 9], vec![6, 7, 6], vec![3, 2, 5]]; assert_eq!(vec![(2, 2)], find_saddle_points(&input)); } // track specific as of v1.3 #[test] //#[ignore] fn non_square_matrix_high() { let input = vec![vec![1, 5], vec![3, 6], vec![2, 7], vec![3, 8]]; assert_eq!(vec![(0, 1)], find_saddle_points(&input)); } #[test] //#[ignore] fn non_square_matrix_wide() { let input = vec![vec![3, 1, 3], vec![3, 2, 4]]; assert_eq!(vec![(0, 0), (0, 2)], find_sorted_saddle_points(&input)); } #[test] //#[ignore] fn single_column_matrix() { let input = vec![vec![2], vec![1], vec![4], vec![1]]; assert_eq!(vec![(1, 0), (3, 0)], find_saddle_points(&input)); } #[test] //#[ignore] fn single_row_matrix() { let input = vec![vec![2, 5, 3, 5]]; assert_eq!(vec![(0, 1), (0, 3)], find_saddle_points(&input)); } #}
4. 答案
# #![allow(unused_variables)] #fn main() { pub fn find_saddle_points(input: &[Vec<u64>]) -> Vec<(usize, usize)> { let mut saddle_points = Vec::new(); let width = input.len(); let height = input[0].len(); for i in 0..width { for j in 0..height { let column = input.iter().map(|x| x[j]).collect::<Vec<u64>>(); let row = &input[i]; let max = row.iter().max().unwrap(); let min = column.iter().min().unwrap(); let value = input[i][j]; if value >= *max && value <= *min { saddle_points.push((i, j)); } } } saddle_points } #}